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Introduction  

The notion of generalized topology was introduced by Csaszar [2] 
in 2002, and he has studied the concept of g-closure and g-interior in 
generalized topological spaces. In this paper we have obtained significant 
properties of g-closure and g-interior. We have also constructed some 
useful examples of g-closure and g-interior in generalized topological 
spaces.  
2. Preliminaries  

 In this section we recall basic properties of closure and interior of 
a set in topological spaces.  
Definition 2.1  

 Let X be a non empty set and let 𝜏 be a family of subsets of X. 
Then 𝜏 is said to be topology on X if following three properties are satisfied 

viz.;  
1.  ∅ and X are in 𝜏,  

2. If 𝐺1 and 𝐺2 are elements of 𝜏 then  𝐺1 ∩ 𝐺2 ∈ 𝜏, 
3. If 𝐺𝑖 ∈ 𝜏, 𝑓𝑜𝑟 𝑖 ∈ 𝐼 then  𝐺𝑖𝑖 ∈𝐼 ∈ 𝜏. 
 The pair (𝑋, 𝜏 ) is called topological space and elements of 

family 𝜏 are called open sets in topological space X. complement of open 
sets are called closed sets in X.  
Example 2.1 

 Let 𝑋 =  𝑥1 , 𝑥2, 𝑥3  and 𝜏 =  ∅, 𝑋,  𝑥1 ,  𝑥2 ,  𝑥1 , 𝑥2  . Then 𝜏 is a 

topology on X.  
Proposition 2.1 

 Let (𝑋, 𝜏 ) be a topological space. Then the following conditions 

are satisfied:  
1. ∅, X are closed sets in X. 

2. Arbitrary intersection of closed sets is a closed set in X. 
3. Finite union of closed sets is a closed set in X.  
Definition 2.2 

 Let (𝑋, 𝜏 ) be a topological space and 𝐴 ⊆ 𝑋. Then the closure of 

A is defined as the intersection of all closed sets in X containing A. The 
closure of A is denoted by 𝐶𝑙  𝐴 . 
Remark 2.1 

 We note that 𝐶𝑙  𝐴  is the smallest closed set in  𝑋, 𝜏   containing 

A. 
Proposition 2.2 

 Let (𝑋, 𝜏 ) be a topological space and 𝐴 ⊆ 𝑋. Then A is closed if 

and only if 𝐶𝑙  𝐴 = 𝐴. 
Proposition 2.3 

 Let (𝑋, 𝜏 ) be a topological space and A, B be subsets of X. Then 

following properties holds: 
1. 𝐶𝑙  ∅ = ∅. 

2. 𝐶𝑙  𝑋 = 𝑋. 

3. If 𝐴 ⊆ 𝐵 then 𝐶𝑙 𝐴 ⊆ 𝐶𝑙 𝐵 . 
4. 𝐶𝑙 𝐴 ∪ 𝐵 =  𝐶𝑙 𝐴 ∪ 𝐶𝑙 𝐵 . 
5. 𝐶𝑙 𝐴 ∩ 𝐵 ⊆  𝐶𝑙 𝐴 ∩ 𝐶𝑙 𝐵 . 
6. 𝐶𝑙 𝐶𝑙 (𝐴) =  𝐶𝑙 𝐴 . 
Proposition 2.4 

 Let (𝑋, 𝜏 ) be a topological space and  𝐴∝ ∝∈Λ  be a family of 

subsets of X. Then 
1.  𝐶𝑙(𝐴∝)∝∈Λ ⊆ 𝐶𝑙    𝐴∝∝∈Λ  . 
2. 𝐶𝑙   𝐴∝∝∈Λ  ⊆   𝐶𝑙 (𝐴∝∝∈Λ ).. 
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Definition 2.3 

 Let (𝑋, 𝜏 ) be a topological space and 𝐴 ⊆ 𝑋. 
Then the interior of A is defined as the union of all 
open sets in X contained in A. The interior of A is 

denoted by 𝐼𝑛𝑡 (𝐴). 
Remark 2.2 

 We note that 𝐼𝑛𝑡 (𝐴) is the largest open set 

in  𝑋, 𝜏   contained in A. 
Proposition 2.5 

 Let (𝑋, 𝜏 ) be a topological space and 𝐴 ⊆ 𝑋. 
Then A is open if and only if 𝐼𝑛𝑡  𝐴 = 𝐴. 
Proposition 2.6 

 Let (𝑋, 𝜏 ) be a topological space and A, B be 

subsets of X. Then following properties holds: 
1. 𝐼𝑛𝑡  ∅ = ∅. 
2. 𝐼𝑛𝑡  𝑋 = 𝑋. 

3. If 𝐴 ⊆ 𝐵 then 𝐼𝑛𝑡  𝐴 ⊆ 𝐼𝑛𝑡  𝐵 . 
4. 𝐼𝑛𝑡  𝐴 ∪  𝐼𝑛𝑡 𝐵 ⊆ 𝐼𝑛𝑡  𝐴 ∪ 𝐵 . 
5. 𝐼𝑛𝑡  𝐴 ∩ 𝐵 =  𝐼𝑛𝑡  𝐴 ∩ 𝐼𝑛𝑡  𝐵 . 
6. 𝐼𝑛𝑡  𝐼𝑛𝑡 (𝐴) =  𝐼𝑛𝑡  𝐴 . 
Proposition 2.7 

 Let (𝑋, 𝜏 ) be a topological space and 
 𝐴∝ ∝∈Λ be a family of subsets of X. Then  

1.  𝐼𝑛𝑡 (𝐴∝)∝∈Λ ⊆ 𝐼𝑛𝑡    𝐴∝∝∈Λ  . 
2. 𝐼𝑛𝑡   𝐴∝∝∈Λ  ⊆  𝐼𝑛𝑡 (𝐴∝∝∈Λ ). 
Proposition 2.8 

 Let (𝑋, 𝜏 ) be a topological space and 𝐴 ⊆ 𝑋.  
Then  
1. 𝐼𝑛𝑡  𝑋 − 𝐴 =  𝑋 − 𝐶𝑙  𝐴 . 
2. 𝐶𝑙  𝑋 − 𝐴 =  𝑋 − 𝐼𝑛𝑡  𝐴 . 
3. g-Closure and g-Interior 

In this section we have studied notions of g-
closure and g-interior in generalized topological 
spaces and obtained their significant properties. 
Further we have obtained useful examples related to 
this context.  
Definition 3.1 [2] 

 Let X be a non-empty set and let 𝜏𝑔  be a 

family of subsets of X. Then 𝜏𝑔  is said to be 

generalized topology on X if following two properties 
are satisfied viz.; 

1. ∅, 𝑋 ∈ 𝜏𝑔 , 

2. If 𝐺𝜆 ∈ 𝜏𝑔  for 𝜆 ∈∧ then ∪𝜆∈∧ 𝐺𝜆 ∈ 𝜏𝑔 . 

 The pair (𝑋, 𝜏𝑔  ) is called generalized 

topological space. 

 The elements of family 𝜏𝑔  are called g-open 

sets and their complements are called g-closed sets.  
Example 3.1 

 Let us consider set 𝑋 =  𝑥1 , 𝑥2 , 𝑥3 . Then we 

see that 𝜏𝑔 =  ∅,𝑋,  𝑥1, 𝑥2  𝑥2 , 𝑥3   is a generalized 

topology on X but is not a topology on X. Thus (𝑋, 𝜏𝑔) 

is a generalized topological space but is not a 
topological space. 
Proposition 3.1 

 Let  𝑋, 𝜏𝑔  be a generalized topological 

space. Then the following conditions are satisfied: 
1. 𝜙 𝑎𝑛𝑑 𝑋 are g-closed sets in X. 

2. Arbitrary intersection of g-closed sets is g-closed 
set in X. 

Proof  

1. Since 𝜙 𝑎𝑛𝑑 𝑋 are g-open sets, it follows that 

their complement 𝑋 𝑎𝑛𝑑 𝜙 are g-closed sets in X. 

2. Let  𝐹∝ ∝∈Λ, where Λ is an index set, be a family 

of g-closed sets in X. Now X −  𝐹∝∝∈Λ =
  (𝑋 − 𝐹∝)∝∈Λ . Since each X − 𝐹∝ is a g-open set 

in X and being arbitrary union of g-open sets 

  (𝑋 − 𝐹∝)∝∈Λ  is a g-open set in X. Hence  

X − 𝐹∝∝∈Λ  is a     g-open set in X. Thus  𝐹∝∝∈Λ  
is a g-closed set in X.  

Remark 3.1 

 We note that union of two g-closed sets in X 
may not be a g-closed set in X. 
Definition 3.2 [2] 

 Let (𝑋, 𝜏𝑔) be a generalized topological 

space and 𝐴 ⊆ 𝑋.Then the g-closure of A is defined 
as the intersection of all g-closed sets in X containing 

A. The g-closure of A is denoted by 𝑐𝑔 𝐴 .  

Remark 3.2 

 We note that 𝑐𝑔 𝐴  is the smallest g-closed 

set in  𝑋, 𝜏𝑔  containing A. 

Proposition 3.2 

 Let  𝑋, 𝜏𝑔  be a generalized topological 

space and 𝐴 ⊆ 𝑋. Then A is g-closed set if and only if 

𝑐𝑔 𝐴 = 𝐴. 

Proof 
 Let A be a g-closed set in X. Then clearly the 
smallest g-closed set containing A, is itself A. Hence 

𝑐𝑔 𝐴 = 𝐴. Conversely suppose 𝐴 ⊆ 𝑋 and 𝑐𝑔 𝐴 = 𝐴. 

Since 𝑐𝑔 𝐴  is a g-closed set in X, it follows that A is 

g-closed set in X. 
Proposition 3.3 

 Let 𝑋, 𝜏𝑔  be a generalized topological space 

and let A, B be subsets of X. Then following 

properties holds: 
1. 𝑐𝑔 𝜙 = 𝜙, 𝑐𝑔 𝑋 = 𝑋. 

2. If 𝐴 ⊆ 𝐵 then 𝑐𝑔 𝐴 ⊆ 𝑐𝑔 𝐵 . 

3. 𝑐𝑔 𝐴 ∪ 𝑐𝑔 𝐵 ⊆ 𝑐𝑔(𝐴 ∪ 𝐵). 

4. 𝑐𝑔 𝐴 ∩ 𝐵 ⊆  𝑐𝑔 𝐴 ∩ 𝑐𝑔 𝐵 . 

5. 𝑐𝑔   𝑐𝑔 𝐴  = 𝑐𝑔 𝐴 . 

Proof 

1. Since 𝜙 and 𝑋 are g-closed sets, from 

Proposition 3.2, we have, 𝑐𝑔 𝜙 = 𝜙 and 

𝑐𝑔 𝑋 = 𝑋. 

2. Suppose 𝐴 ⊆ 𝐵 in X. Since 𝐵 ⊆ 𝑐𝑔 𝐵  and 𝐴 ⊆ 𝐵, 

we have 𝐴 ⊆ 𝑐𝑔 𝐵 . Now 𝑐𝑔 𝐵  is a g-closed set 

and 𝑐𝑔 𝐴  is the smallest   g-closed set 

containing 𝐴, we find that 𝑐𝑔 𝐴 ⊆ 𝑐𝑔 𝐵 . 

3. Since 𝐴 ⊆ 𝐴 ∪ 𝐵, 𝐵 ⊆ 𝐴 ∪ 𝐵 from (ii) we have 

𝑐𝑔 𝐴 ⊆ 𝑐𝑔(𝐴 ∪ 𝐵) and 𝑐𝑔 𝐵 ⊆ 𝑐𝑔 𝐴 ∪ 𝐵 . This 

implies 𝑐𝑔 𝐴 ∪ 𝑐𝑔 𝐵 ⊆ 𝑐𝑔(𝐴 ∪ 𝐵). 

4. Since 𝐴 ∩ 𝐵 ⊆ 𝐴 and 𝐴 ∩ 𝐵 ⊆ 𝐵 from (ii) we have 

𝑐𝑔(𝐴 ∩ 𝐵) ⊆  𝑐𝑔(𝐴) and  𝑐𝑔 𝐴 ∩ 𝐵 ⊆ 𝑐𝑔 𝐵 . This 

implies 𝑐𝑔(𝐴 ∩ 𝐵) ⊆  𝑐𝑔(𝐴) ∩ 𝑐𝑔 𝐵 . 

5. Since 𝑐𝑔(𝐴) is a g-closed set in X, it follows that 

𝑐𝑔   𝑐𝑔 𝐴  = 𝑐𝑔 𝐴 . 

In the above Proposition 3.3 (iii) we note that 
𝑐𝑔 𝐴 ∪ 𝑐𝑔 𝐵  ≠ 𝑐𝑔 𝐴 ∪ 𝐵 . We have following 

Example. 
Example 3.2 

 Let us consider set 𝑋 =  𝑥1 , 𝑥2 , 𝑥3, 𝑥4                    
with respect to generalized topology 

𝜏𝑔 =  𝜙,𝑋,  𝑥2, 𝑥3 ,  𝑥1 , 𝑥2, 𝑥4  . Then the family of g-

closed sets is given by 𝜏𝑔
𝑐 =  𝜙, 𝑋,  𝑥3 ,  𝑥1 , 𝑥4  . Let 

us consider sets 𝐴 =  𝑥1 , 𝐵 =  𝑥3 . Then 𝑐𝑔 𝐴 =
 𝑥1 , 𝑥4  𝑎𝑛𝑑 𝑐𝑔 𝐵 =  𝑥3 . Now 𝑐𝑔 𝐴 ∪ 𝑐𝑔 𝐵 =
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  𝑥1, 𝑥3 , 𝑥4  and 𝑐𝑔 𝐴 ∪ 𝐵 = 𝑋. Therefore 𝑐𝑔 𝐴 ∪

𝑐𝑔 𝐵  ≠ 𝑐𝑔 𝐴 ∪ 𝐵 . 

In the above Proposition 3.3 (iv) we note that  

𝑐𝑔 𝐴 ∩ 𝐵 ≠ 𝑐𝑔 𝐴 ∩ 𝑐𝑔 𝐵 . We have following 

Example. 
Example 3.3 

 Let 𝑋 =  𝑥1 , 𝑥2, 𝑥3 , 𝑥4  and 

𝜏𝑔 =  𝜙,𝑋,  𝑥1 ,  𝑥4 ,  𝑥1 , 𝑥4 ,  𝑥1 , 𝑥2 , 𝑥3 ,  𝑥2 , 𝑥3 , 𝑥4   be 

generalized topology on X. Then the                         
family of g-closed sets is given 

by 𝜏𝑔
𝑐 =  𝜙, 𝑋,  𝑥1 ,  𝑥4 , {𝑥2, 𝑥3  },  𝑥2 , 𝑥3 , 𝑥4 ,  𝑥1 , 𝑥2 , 𝑥3  . 

Let us consider sets 𝐴 =  𝑥1 , 𝑥2 , 𝐵 =  𝑥3 , 𝑥4 . Then 

𝑐𝑔 𝐴 =  𝑥1, 𝑥2 , 𝑥3  𝑎𝑛𝑑 𝑐𝑔 𝐵 =  𝑥2, 𝑥3 , 𝑥4 . Now  

𝑐𝑔 𝐴 ∩ 𝑐𝑔 𝐵 =  𝑥2, 𝑥3  and 𝑐𝑔 𝐴 ∩ 𝐵 = 𝑐𝑔 𝜙 = 𝜙. 

Hence 𝑐𝑔 𝐴 ∩ 𝐵 ≠ 𝑐𝑔 𝐴 ∩ 𝑐𝑔 𝐵 . 

Proposition 3.4 

 Let  𝑋, 𝜏𝑔  be a generalized topological 

space and  𝐴∝ ∝∈Λ be a family of subsets of X. Then 

1.  𝑐𝑔∝∈Λ  (𝐴∝) ⊆ 𝑐𝑔  ( 𝐴∝∝∈Λ ). 

2. 𝑐𝑔    𝐴∝∝∈Λ  ⊆    𝑐𝑔 (𝐴∝)∝∈Λ . 

Proof 

 Similar to proof of Proposition 3.3 (iii) and 
(iv). 
Definition 3.3 [2] 

 Let  𝑋, 𝜏𝑔  be a generalized topological 

space and 𝐴 ⊆ 𝑋. Then the g-interior of A is defined 

as the union of all g-open sets in X contained in A. 

The g-interior of A is denoted by 𝑖𝑔 𝐴 . 

Remark 3.3 

 We note that 𝑖𝑔 𝐴  is the largest g-open set 

in  𝑋, 𝜏𝑔  contained in A. 

Proposition 3.5 

 Let  𝑋, 𝜏𝑔  be a generalized topological 

space and 𝐴 ⊆ 𝑋. Then A is g- open if and only if  

𝑖𝑔 𝐴 = 𝐴. 

Proof 

 Let A be a g-open set in X. Then clearly the 
largest g-open set contained in A, is itself A. Hence 
𝑖𝑔 𝐴 = 𝐴. Conversely suppose 𝐴 ⊆ 𝑋 and 𝑖𝑔 𝐴 = 𝐴. 

Since 𝑖𝑔 𝐴   is a g-open set in X, it follows that A is a 

g-open set in X. 
Proposition 3.6 

 Let  𝑋, 𝜏𝑔  be a generalized topological 

space and let A, B be subsets of X. Then the following 
properties hold: 
1.  𝑖𝑔 𝜙 = 𝜙, 𝑖𝑔 𝑋 = 𝑋. 

2. If 𝐴 ⊆ 𝐵 then 𝑖𝑔 𝐴 ⊆ 𝑖𝑔 𝐵 . 

3. 𝑖𝑔 𝐴 ∪ 𝑖𝑔 𝐵 ⊆ 𝑖𝑔(𝐴 ∪ 𝐵). 

4. 𝑖𝑔 𝐴 ∩ 𝐵 ⊆  𝑖𝑔 𝐴 ∩ 𝑖𝑔 𝐵  . 

5. 𝑖𝑔   𝑖𝑔 𝐴  = 𝑖𝑔 𝐴 . 

Proof 

1. Since 𝜙 and X are g-open sets, from Proposition 

3.5, we have, 𝑖𝑔 𝜙 = 𝜙 and 𝑖𝑔 𝑋 = 𝑋. 

2. Suppose 𝐴 ⊆ 𝐵 in X. Since 𝑖𝑔(𝐴) ⊆ 𝐴 and 𝐴 ⊆ 𝐵, 

we have 𝑖𝑔 𝐴 ⊆ 𝐵. Now  𝑖𝑔 𝐴  is a g-open set 

and  𝑖𝑔 𝐵  is the largest g-open set contained in 

B, we find that  𝑖𝑔 𝐴 ⊆   𝑖𝑔 𝐵 . 

3. Since 𝐴 ⊆ 𝐴 ∪ 𝐵, 𝐵 ⊆ 𝐴 ∪ 𝐵 from (ii) we have 

 𝑖𝑔 𝐴 ⊆   𝑖𝑔   𝐴 ∪ 𝐵  and  𝑖𝑔 𝐵 ⊆   𝑖𝑔   𝐴 ∪ 𝐵 . This 

implies  𝑖𝑔 𝐴 ∪  𝑖𝑔 𝐵 ⊆  𝑖𝑔 𝐴 ∪ 𝐵 . 

4. Since 𝐴 ∩ 𝐵 ⊆ 𝐴 and 𝐴 ∩ 𝐵 ⊆ 𝐵, from (ii) we have 

 𝑖𝑔 𝐴 ∩ 𝐵 ⊆  𝑖𝑔 𝐴  and  𝑖𝑔 𝐴 ∩ 𝐵 ⊆  𝑖𝑔 𝐵 . This 

implies  𝑖𝑔 𝐴 ∩ 𝐵 ⊆  𝑖𝑔 𝐴 ∩  𝑖𝑔 𝐵 . 

5. Since  𝑖𝑔 𝐴  is a g-open set in X, it follows that 

𝑖𝑔   𝑖𝑔 𝐴  = 𝑖𝑔 𝐴 . 

In the above Proposition 3.4 (iii) we note that  
 𝑖𝑔 𝐴 ∪  𝑖𝑔 𝐵  ≠   𝑖𝑔 𝐴 ∪ 𝐵 . 

Example 3.4 

 Let 𝑋 =  𝑥1 , 𝑥2, 𝑥3 , 𝑥4  be generalized 

topological space with respect to generalized topology 

𝜏𝑔 =  𝜙,𝑋,  𝑥1 ,  𝑥3 ,  𝑥1 , 𝑥3 ,  𝑥1 , 𝑥2 , 𝑥3 ,  𝑥2 , 𝑥3 , 𝑥4  . 

Let us consider sets 𝐴 =  𝑥1 , 𝑥2 , 𝐵 =  𝑥3 , 𝑥4 . Then 

 𝑖𝑔 𝐴 =  𝑥1  and 𝑖𝑔 𝐵 =  𝑥3 . Now  𝑖𝑔 𝐴 ∪  𝑖𝑔 𝐵 =

 𝑥1 , 𝑥3  and  𝑖𝑔 𝐴 ∪ 𝐵 = 𝑋. Therefore  𝑖𝑔 𝐴 ∪

 𝑖𝑔 𝐵  ≠   𝑖𝑔 𝐴 ∪ 𝐵 . 

In the above Proposition 3.4 (iv) we note that  
 𝑖𝑔 𝐴 ∩ 𝐵 ≠  𝑖𝑔 𝐴 ∩  𝑖𝑔 𝐵 . 

Example 3.5 

 Let 𝑋 =  𝑥1 , 𝑥2, 𝑥3 , 𝑥4  be generalized 

topological space with respect to generalized 

topology 𝜏𝑔 =  𝜙, 𝑋,  𝑥1 , 𝑥2 ,  𝑥2 , 𝑥3, 𝑥4  . Let us 

consider sets 𝐴 =  𝑥1 , 𝑥2 , 𝑥3 , 𝐵 =  𝑥2 , 𝑥3, 𝑥4 . Then 

 𝑖𝑔 𝐴 =  𝑥1 , 𝑥2  𝑎𝑛𝑑  𝑖𝑔 𝐵 =  𝑥2 , 𝑥3 , 𝑥4 . Now 

 𝑖𝑔 𝐴 ∩  𝑖𝑔 𝐵 =  𝑥2  and  𝑖𝑔 𝐴 ∩ 𝐵 = 𝜙. Thus 

 𝑖𝑔 𝐴 ∩ 𝐵 ≠  𝑖𝑔 𝐴 ∩  𝑖𝑔 𝐵 . 

Proposition 3.7 

 Let  𝑋, 𝜏𝑔  be a generalized topological 

space and  𝐴∝ ∝∈Λ  be a family of subsets of X. Then 

1.  𝑖𝑔∝∈Λ  (𝐴∝) ⊆ 𝑖𝑔  ( 𝐴∝∝∈Λ ). 

2. 𝑖𝑔    𝐴∝∝∈Λ  ⊆    𝑖𝑔 (𝐴∝)∝∈Λ . 

Proof 

 Similar to proof of Proposition 3.6 (iii) and 
(iv). 
Proposition 3.8 

 Let  𝑋, 𝜏𝑔  be a generalized topological 

space and 𝐴 ⊆ 𝑋.  Then  

1. 𝑖𝑔   𝑋 − 𝐴 =  𝑋 − 𝑐𝑔 𝐴 . 

2. 𝑐𝑔   𝑋 − 𝐴 =  𝑋 − 𝑖𝑔    𝐴 . 

Proof   

1. We have 𝑋 − 𝑐𝑔 𝐴  = 𝑋 −  { 𝐹∝∝∈Λ : 𝐹∝ is a g −

colsed set in 𝑋 and 𝐴 ⊆ 𝐹∝}                     
=   {𝑋 −∝∈Λ 𝐹∝:  𝑋 − 𝐹∝  is a g −
    open set in 𝑋 and  𝑋 −  𝐹∝  ⊆    𝑋 − 𝐴 }. 
=  𝑖𝑔   𝑋 − 𝐴 .  

2. From (i), we have 𝑋 − 𝑐𝑔   𝑋 − 𝐴 = 𝑖𝑔 𝑋 −

 𝑋−𝐴= 𝑖𝑔  𝐴. Hence 𝑋−𝑖𝑔  𝐴=𝑐𝑔 𝑋−𝐴. 
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